

CISCO SYSTEMS

Sec-30

Surviving a DoS Attack

SEC-301

DoS: The Procedure

- Detecting and Classifying DoS Attacks
- Tracing DoS Attacks
- Containing DoS Attacks
- Special Case: Web Server Protection
- Additional Solutions: Arbor and Riverhead

Disclaimer:

- DoS is a research topic!
- Please contribute your experience!

Detecting and Classifying DoS Attacks

Ways to Detect and Classify DoS Attacks

- Customer Call
- SNMP: Line/CPU overload, Drops
- NetFlow: Counting Flows
- ACLs with Logging
- Backscatter
- Sniffers

Cisco.com

Detecting DoS Attacks with NetFlow

Cisco.com

Basis: Have NetFlow running on the network

DANTE uses: X=15 min, Y=200, Z=10 sec, N=10

Values are empirical

How does a DoS Attack Look Like?

Cisco.com

Potential DoS attack (33 flows) on router1 Estimated: 660 pkt/s 0.2112 Mbps

ASxxx is: ...

ASddd is: ...

src_ip	dst_ip	in	out	src	dest	pkts	bytes	prot	s <mark>rc_</mark> as	dst_as
		int	int	port	port					
192.xx.xxx.69	194.yyy.yyy.2	29	49	1308	77	1	40	6	xxx	ddd
192.xx.xxx.222	194.yyy.yyy.2	29	49	1774	1243	1	40	6	XXX	ddd
192.xx.xxx.108	194.yyy.yyy.2	29	49	1869	1076	1	40	6	XXX	ddd
192.xx.xxx.159	194.yyy.yyy.2	29	49	1050	903	1	40	6	XXX	ddd
192.xx.xxx.54	194.yyy.yyy.2	29	49	2018	730	1	40	6	XXX	ddd
192.xx.xxx.136	194.yyy.yyy.2	29	49	1821	559	1	40	6	XXX	ddd
192.xx.xxx.216	194.yyy.yyy.2	29	49	1516	383	1	40	6	XXX	ddd
192.xx.xxx.111	194.yyy.yyy.2	29	49	1894	45	1	40	6	XXX	ddd
192.xx.xxx.29	194.yyy.yyy.2	29	49	1600	1209	1	40	6	XXX	ddd
192.xx.xxx.24	194.yyy.yyy.2	29	49	1120	1034	1	40	6	XXX	ddd
192.xx.xxx.39	194.yyy.yyy.2	29	49	1459	868	1	40	6	XXX	ddd
192.xx.xxx.249	194.yyy.yyy.2	29	49	1967	692	1	40	6	XXX	ddd
192.xx.xxx.57	194.yyy.yyy.2	29	49	1044	521	1	40	6	XXX	ddd

- - -

Backscatter Analysis

- Cisco.com
- Blackhole router: Statically announce unused address space (1/8, 2/8, 5/8, ...) (see http://www.iana.org/assignments/ipv4-address-space)
- Note: Hackers know this trick: Use also unused space from your own ranges!!!
- Victim replies to random destinations
- -> Some backscatter goes to blackhole router, where it can be analysed

Backscatter Analysis

Case Study: Slapper Worm (Sep 2002)

Cisco.com

IP Address:(a)b)0.0

int isreal(unsigned long server) {

if
$$a == 127 || a == 10 || a == 0)$$

return 0;
if $(a == 172 \&\&b >= 16 \&\&b <= 31)$
return 0;
if $(a == 192 \&\&b == 168)$ return 0;
return 1;Worm does not use:
127.x.x.x
10.x.x.x
0.x.x.x
172.16-31.x.x
192.168.x.x

if (!isreal(udpclient.in.sin_addr.s_addr)) break;

Source: http://isc.incidents.org/analysis.html?id=167

Re-Directing Traffic from the Victim

-Keeps line to customer clear -But cuts target host off completely -Discuss with customer!!! -Just for analysis normally

Blackhole Router: Announces route "target/32" Logging!!

Zr

Other

ISPs

Z

Sec-301

Ingress

Routers

Target

Cisco.com

Tracing DoS Attacks

Tracing DoS Attacks

Cisco.com

• If source prefix is not spoofed:

- -> Routing table
 -> Internet Routing Registry (IRR)
 -> direct site contact
- If source prefix is spoofed:
 - -> Trace packet flow through the network ACL, NetFlow, IP source tracker

-> Find upstream ISP-> Upstream needs to continue tracing

IP Source Tracker

Traditional way of tracking DoS: ACL or NetFlow

Limitation in performance and cross LC support

Source Tracker:

Across LCs, low performance impact

• Availability:

GSR E0,1,2,4: From 12.0(21)S

GSR E3: From 12.0(24)S (slipped from (23))

GSR E4+: From 12.0(21)S (POS), (23)S (other)

Other platforms to follow

Line Card

Cisco.com

IP Source Tracker (E3: (24)S, E4+ non-POS: (23)S, rest+7500: (21)S)

All Cisco.com

See: http://www/univercd/cc/td/doc/product/software/ios120/120newft/120limit/120s/120s21/ipst.htm

Sec-301

Show ip cache flow

All Cisco.com

IP Flow Switching Cache, 278544 bytes 2728 active, 1368 inactive, 85310 added 463824 ager polls, 0 flow alloc failures Active flows timeout in 30 minutes Inactive flows timeout in 15 seconds last clearing of statistics never

Source Interface

Flow info summary

Protocol	Total F	lows	Packets	Bytes	Packets	Active	e(Sec)	Idle	e(Sec)
	Flows	/Sec	/Flow	/Pkt	/Sec	/ 1	Flow	/ E	low
TCP-X	2	0.0	1	1440	0.0		0.0		9.5
TCCTT	82580	11.2	1	1440	11.2		0.0	1	2.0
	82582	F	low det	aile	11.2		0.0	1	2.0
Et0/0				ans					
Sr	SrcIPaddress	Dst:	If	DstI	Paddress	Pr	SrcP	DstP	Pkts
Et Et0/0	132.122.25.60) Se0,	/0	192.	168.1.1	06	9aee	0007	1
	139.57.220.28	8 Se0,	/0	192.	168.1.1	06	708D	0007	1
	165.172.153.6	55 Se0,	/0	192.	168.1.1	06	CB46	0007	1

Show ip cache verbose flow

Cisco.com router A#sh ip cache verbose flow IP packet size distribution (23597 total packets): 64 96 128 160 192 224 256 288 320 1 - 32352 384 416 448 480 .000.000.000.000.000.000.000.000.000.000.000.000.000.000.000 576 1024 1536 2048 2560 3072 3584 4096 4608 512 544 IP Flow Switching Cache, 278544 bytes 1323 active, 2773 inactive, 23533 added 151644 ager polls, 0 flow alloc failures Active flows timeout in 30 minutes Inactive flows timeout in 15 seconds last clearing of statistics never Protocol Total Flows Packets Bytes Packets Active(Sec) Idle(Sec) Flows /Sec /Flow /Pkt /Sec /Flow /Flow TCP-other 22210 3.1 1440 3.1 0.0 12.9 1 3.1 3.1 Total: 22210 1440 0.0 12.9 1 Port Msk AS R/Pk Active Port Msk AS NextHop

				_,	
		50070	IJZ.IUU.I.I	00 00 10	<u></u>
5FA7 /0 0		0007 /0 0	0.0.0.0	1440	0.0
Et0/0	175.182.253.65	Se0/0	192.168.1.1	06 00 10	1

Tracing Back with ACLs

All Cisco.com

- Create ACL:
 access-list 101 permit ip any <target> log-input
- Apply to interface for a few seconds: interface xxx ip access-group 101 in (wait a few seconds) no ip access-group 101
- Log shows interface the attack comes from

14:17:21: %SEC-6-IPACCESSLOGP: list 101 permitted tcp 105.12.73.84(0) (FastEthernet0/0 0006.d780.2380) -> 192.168.1.1(0), 1 packet

14:17:22: %SEC-6-IPACCESSLOGP: list 101 permitted tcp 166.159.237.65(0) (FastEthernet0/0 0006.d780.2380) -> 192.168.1.1(0), 1 packet

src interface

Tracing Back with ACLS (again, bigger)

Cisco.com

Note: ACL with "log" does not show the source interface, "log-input" does (see above)

Tracing Back Across an IXP (...or any other shared medium)

Cisco.com

NetFlow: Shows i/f only

Useless if IXP: Lots of routers behind...

• ACLs with log-input:

Shows also the MAC address of the router:

1d00h: %SEC-6-IPACCESSLOGDP: list 101 denied icmp 11.1.1.18 (Ethernet0 0001.96e6.7641) -> 10.1.2.1 (0/0), 169 packets

GSR6#sh arp | include 0001.96e6.7641 Internet 12.1.1.99 152 0001.96e6.7641 ARPA

Ethernet0

Originating router

- Cisco.com
- Border routers: Allow ICMP (rate limited)
- From Black hole router:

iBGP update to all ingress routers: "drop all traffic to <victim>" (details later)

- All ingress router drop traffic to <victim>
- And send ICMP unreachables to source!!
- Black hole router logs the ICMPs!

On black hole router:

- Static routes for 1/8,2/8,5/8 (will attract 3/256 of packets)
- access-list 105 permit icmp any any log-input access-list 105 permit ip any any

Border router sends ICMP unreachable for dropped packets, to source.

If source is random, some will go to 1/8, 2/8, 5/8, …

03:17:22: %SEC-6-IPACCESSLOGDP: list 105 permitted icmp 192.168.0.2 (Serial0/0 *HDLC*) -> 5.52.203.66 (0/0), 1 packet 03:17:38: %SEC-6-IPACCESSLOGDP: list 105 permitted icmp 192.168.0.2 (Serial0/0 *HDLC*) -> 1.167.111.47 (0/0), 1 packet 03:17:52: %SEC-6-IPACCESSLOGDP: list 105 permitted icmp 192.171.12.5 (Serial0/1 *HDLC*) -> 2.153.59.34 (0/0), 1 packet

Sec-301

Cisco.com

NAME OF T

Summary Tracing DoS Attacks

Cisco.com

Non-spoofed: Technically trivial (IRR)

But: Potentially tracing 100's of sources...

Spoofed:

IP Source Tracker

NetFlow: Trivial if mechanisms are installed Manually: Router by router

ACLs: Has performance impact on some platforms Mostly manual: Router by router

Backscatter Technique: One step, fast

Containing DoS Attacks

All ISPs should do one of:

Unicast Reverse Path Fowarding (uRPF) Check

Packet filters (ACLs)

on all external i/f (where possible)

-> See ISP Essentials: http://www.cisco.com/public/cons/isp/documents/

Note: This does NOT prevent DoS! (just spoofed packets)

Cisco.com

Sec-301

Loose uRPF Check (Unicast Reverse Path Forwarding)

Cisco.com

router(config-if)# ip verify unicast source reachable-via any

Deleting Traffic *from* a **Source Address**

- Goal: Delete all packets *from* 1.2.3.4
- Static route:
 1.2.3.4 → Null0
- Loose uRPF: "reachable-via any"
- Minimal CPU impact (2-3%), CEF based
- Alternative to ACL

Effectiveness of uRPF

"We're currently taking a ~25Mb/s attack, and when I put an ACL entry on the ingress interface the CPU load hit 95%. I switched over to distributing a route to a next-hop that tied the CEF adjacency to Null0, and the traffic was still discarded and CPU utilization went down to 45% (20% is normal for the box, when we're not being attacked).

Turns out I do understand it. It's very cool. :-) "

A customer

Using CAR to Rate Limit Attack Traffic

Cisco.com

interface xy

rate-limit output access-group 2020 3000000 512000 786000 conform-action transmit exceed-action drop

access-list 2020 permit icmp any any echo-reply

• Other ACLs for other attacks: UDP based attacks, ...

• Watch your CPU!!!

Using CAR against SYN Flood Attacks

Cisco.com

• Same rate limiting, with this ACL:

access-list 169 deny tcp any any established

access-list 169 permit tcp any host victim-host

access-list 169 deny ip any any

Watch your CPU!

Reminder: TCP Handshake

SYN/ACK

SYN

Stopping SYN Attacks: TCP intercept

Cisco.com

- SYN rate-limiting: Kills "good" traffic, too
- Proper solution: TCP intercept
- Performance:

- CSM scales: Several blades per Cat6k
- DoS against Web? -> Content story!!!

Important

Making it Scalable

- Problem: Potentially 100's of sources to track and shun
- Manually: For few sources only
- On big ISP networks: Scalable mechanisms required!
- Idea: Use routing to distribute information

Cisco.com

Configuring CAR through BGP

Cisco.com

- Feature: QPPB (QoS Policy Propagation with BGP)
- On each border router: Define a CAR policy on each border router, linked to a QoS group (normally unused)
- To limit an attacking network, assign this network to the QoS group (BGP community)

See: http://www.cisco.com/univercd/cc/td/doc/product/software/ios111/cc111/bgpprop.htm

Sec-301

Shunning with uRPF and BGP

Cisco.com

- ip route x.x.x.x null0 is manual :-(
- BGP cannot send "next-hop null0"... but:
- BGP can send "next-hop 192.0.2.1"
- And on each border router:

ip route 192.0.2.1 null0

• Router receives iBGP routing update:

"Route x.x.x.x next-hop 192.0.2.1" (comm: local-AS)

and it has an ip route 192.0.2.1 nullo

Thus: x.x.x.x -> null0 (note: CEF required!)

With uRPF: Source x.x.x.x also -> null0

Effect of BGP Remote Trigger

- Traffic to/from a specific subnet will be sent to null0
- Automatically, on all border routers
- No attack traffic on backbone
- But... Where is the attack coming from??? Which upstream ISPs to notify???

Cisco.com

ICMP Backscatter

Cisco.com

On black hole router:

- Static routes for 1/8,2/8,5/8 (will attract 3/256 of packets)
- access-list 105 permit icmp any any log-input access-list 105 permit ip any any

Border router sends ICMP unreachable for deleted packets, to source.

If source is random, some will go to 1/8, 2/8, 5/8, …

03:17:22: %SEC-6-IPACCESSLOGDP: list 105 permitted icmp 192.168.0.2 (Serial0/0 *HDLC*) -> 5.52.203.66 (0/0), 1 packet 03:17:38: %SEC-6-IPACCESSLOGDP: list 105 permitted icmp 192.168.0.2 (Serial0/0 *HDLC*) -> 1.167.111.47 (0/0), 1 packet 03:17:52: %SEC-6-IPACCESSLOGDP: list 105 permitted icmp 192.171.12.5 (Serial0/1 *HDLC*) -> 2.153.59.34 (0/0), 1 packet

Sec-301

NAME OF T

ICMP Rate-Limiting

Cisco.com

GSR6(config)# ip icmp rate-limit unreachable 3000

Reply from 12.1.1.6: Destination net unreachable. Request timed out. Request timed out. Reply from 12.1.1.6: Destination net unreachable. **Request timed out. Request timed out. Reply from 12.1.1.6: Destination net unreachable. Request timed out. Request timed out. Reply from 12.1.1.6: Destination net unreachable. Request timed out. Request timed out.** Reply from 12.1.1.6: Destination net unreachable. **Request timed out. Request timed out.**

Unreachables sent every 3000 ms

Summary: Containing DoS Attacks

• ACLs:

Manual, on some routers performance impact

• uRPF:

Stops non-existing sources

Automated with BGP for specific shunning

• CAR:

Limit attack flow, performance impact Manual or automated via QPPB (BGP) Cisco.com

Reality Check: Does all this make sense?

Rate Limit:

Mostly we also limit "good" traffic

--> Users are also limited

Exceptions: ICMP, maybe UDP?

ACLs and Null0:

We drop all traffic to a server

Also "good" traffic

Goal: ACLs as specific as possible

We need to become "smarter"!!

Cisco.com

Special Case: Web Server Protection

Web Server Protection

Cisco.com

- Heard about big web attacks last year? No? Why not???
- There is a solution: Content Networking

Reverse Proxy Caching

Clients Web Server ZK WAN installed Time Server before Response **A**

Cisco.com

The Content Switching Module (CSM) for the Catalyst 6500

Built-in: TCP Intercept against SYN attacks!!

Content Distribution Networks

Additional Solutions: Arbor and Riverhead

The Need for More...

Cisco.com

 On today's routers you have limited CPU More "intelligence" needed

Blocking, rate-limit mostly too course
 Also affects "legal" traffic

Arbor Networks Peakflow DoS: Hardware

Cisco.com

- IRU rack height (1.7")
- Collects flow statistics from border and edge routers
- 2 types of collectors: NetFlow and Packet Capture
- Builds dynamic traffic baseline to detect bandwidth anomalies
- Works with Cisco routers and IDS/firewalls

- 2RU rack height (3.3"),
- Aggregates distilled anomaly data from Collectors
- Correlates distributed events to create network-wide view of all DoS attacks

Arbor Networks: SP solution

- 4. Trace : Trace the attack to its source.
- 5. Filter : Recommends filters (X)

Cisco.com Service Provider C

Riverhead: Basic Concepts

- **1.** Detection
- 2. Diversion of victims' traffic
- **3.** Sieve out malicious traffic
- 4. Legitimate traffic continues

on its route

Wrap Up

What we can do now

- Cisco.com
- Detect DoS Attacks (SNMP, NetFlow, ACL)
- Trace back random packet floods (NetFlow, ACLs, IP source tracker)
- Shun a source (uRFP, ACL)
- Shun a destination (routing, ACL)
- Limit attacking traffic (CAR, PIRC)
- Remote trigger via iBPG
- Protect Web servers (CSM / Content Networking)
- Understand partner solutions (Arbor, Riverhead)

Tip: scheduler allocate

Cisco.com

 Schedules CPU time spent on processes versus interrupts

Syntax:

scheduler allocate <interrupt> <processes>

<interrupt>: 3000-60000 Microseconds handling network
interrupts
<processes>: 1000-8000 Microseconds running processes

Example:

router(config)#scheduler allocate 8000 8000

Very useful under heavy load! Recommended Standard Config!

And Most Important:

Be Prepared!!!!!

- Most tricks need pre-configs
- Install a black hole router!
- Learn what you can / cannot do (ACLs!)
- Practise, practise, practise, ...

Cisco.com

Other Complementary Sessions

Cisco.com

SEC-211: Security on Routers

- SEC-307: Security on Ethernet Switches
- SEC-200: Network Security: Risk and Threat model
- SEC-201: Network Security: Design and Attack Mitigation

SEC-204: Understanding and Deploying Intrusion Detection Systems

SEC-214: The security of MPLS VPN

References (non-Cisco)

Cisco.com

DoS Detection:

- "Tackling Network DoS on Transit Networks": David Harmelin, DANTE, March 2001 (describes a detection method based on NetFlow) [http://www.dante.net/pubs/dip/42/42.html]
- "Inferring Internet Denial-of-Service Activity": David Moore et al, May 2001; (described a new method to detect DoS attacks, based on the return traffic from the victims, analysed on a /8 network; very interesting reading) [http://www.caida.org/outreach/papers/backscatter/index.xml]
- "The spread of the code red worm": David Moore, CAIDA, July 2001 (using the above to detect how this worm spread across the Internet) [http://www.caida.org/analysis/security/code-red/]

DoS Tracing:

"Tracing Spoofed IP Addresses": Rob Thomas, Feb 2001; (good technical description of using NetFlow to trace back a flow)

[http://www.enteract.com/~robt/Docs/Articles/tracking-spoofed.html]

Other:

 "DoS attacks against GRC.com": Steve Gibson, GRC, June 2001 (a real life description of attacks from the victim side; somewhat disputed, but fun to read!) [<u>http://grc.com/dos/grcdos.htm</u>]

References (Cisco)

Cisco.com

Product Security:

- Cisco's Product Vulnerabilities; A page that every SE MUST know!!!
 [http://www.cisco.com/warp/public/707/advisory.html]
- Security Reference Information: Various white papers on DoS attacks and how to defeat them [http://www.cisco.com/warp/public/707/ref.html]

ISP Essentials:

 Technical tips for ISPs every ISP should know [http://www.cisco.com/public/cons/isp/]

Technical tips:

- Troubleshooting High CPU Utilization on Cisco Routers
 [http://www.cisco.com/warp/public/63/highcpu.html]
- The "show processes" command
 [http://www.cisco.com/warp/public/63/showproc_cpu.html]

Mailing lists:

- cust-security-announce: All customers should be on this list.
- cust-security-discuss: For informal discussions.

Surviving a DoS Attack

SEC-301

Please Complete Your Evaluation Form SEC-301

CISCO SYSTEMS